Physical Objectives	Description	Measureable Criteria	Monitoring Technique	Effectiveness Criteria	Notes
1. Habitat protection and conservation	 Fee title acquisition Term conservation easement 	Protected acreage	 Bi-weekly livestock trespass monitoring Fence/water gap inspection Boundary inspection 	Increased acreage protected	 Livestock exclusior Habitat program d acquisition/easem
2. Floodplain reconnection	 Restore connectivity to promote hydrologic and physical processes that maintain complex and resilient habitats that hydrate/store, attenuate floods, and buffer water temperature. 	 Inundation @ annual 1.25 flood flow Summer base flow Acreage inundated Ground water elevations Beaver habitat suitability (# acres)(see notes) 	 UAV Imagery (remote sensing) Groundwater wells Stage recorders Piezometer 	 Inundated acreage (annual) Groundwater elevation in relation to ground surface Summer base flow discharge Increase acre-foot (af) storage 	 Valley form and st. of floodplain conn Increase floodplain damage to nearby Beaver habitat suit
3. Channel morphology restoration	 Increase stream length and channel complexity 	 Lengths of main channel and side channels (miles) Number of pools (see notes) Sinuosity Node density Maintain side-channel activation 	 Longitudinal profile UAV (remote sensing) River complexity index (RCI) 	 Increase main and side channel lengths Increase sinuosity (geomorphic template) Increase pools (4'depth)/mi Higher RCI than pre-project conditions Side-channel and peripheral habitat persistence 	 RCI will follow star Deriving a target v 2000 coupled with Sinuosity is conting
4. Instream habitat structure and complexity	Increase large wood (LW) in project reach	 Wood loading (pieces/mile) commensurate with reference condition wood loading (see notes) 	 Survey prior to project start UAV(remote sensing) 	 Increase pieces/mile in relation to design based on reference 	 It is expected woo Large wood freque associated with re Bioclimatic region, instream wood loa
5. Riparian restoration and management	Restore riparian and floodplain vegetation	Percent vegetation cover	 UAV imagery (remote sensing) Stock/stem survival Photo points 	 Year 5: >80% fully vegetated (herbaceous cover, including sedges and rushes/herbaceous) Year 5: 20% riparian and forest shrub tree cover Year 25: >50% riparian and forest shrub tree cover 	 Riparian vegetatio imagery and on-th Monitoring of veget
6. Water quality	 Improve summer and winter altered thermal regime 	Stream temperature	 Forward looking infrared (FLIR) Thermographs Maximum Weekly Maximum Temperature (MWMT) Diurnal fluctuation range 	 Reduce # days under 25°C (lethal limit) Increase #days within 10°C and 18°C (core cold temps for salmonids) 	1. Contingent on fun
7. Fish passage	 Improve fish passage for all life stages of targeted species (steelhead, chinook salmon, bull trout, and Pacific lamprey) 	 Overflow capacity for floodplain connection Native fish species present Life history stages that require fish passage 	ODFW Fish Passage Criteria (635- 412-0035)(See notes)	Miles of restored or improved passage for targeted species	1. ODFW Chapter 63

on, direct benefit for riparian protection.	
directly involved with planning/management of	
nents,	

stakeholder/landowner buy-in are limiting factors for max potential nnectivity.

lain connectivity as discharges increase without increasing flood by infrastructure (if present).

suitability will correlate with floodplain acreage.

tandard protocol of Brown 2002. It value of pool frequency will be consistent with McIntosh et al. Ith Rosgen morphology and BOR Tributary Assessment. Itingent on geomorphic template of project reach.

ood loadings will vary due to recruitment and dismissal of LW. quencies within the bankfull channel will be correlated to quantities reference conditions (Mcintosh et al. 1994). on, drainage area, and channel width are dominant predictors of load (Wohl et al. 2017).

tion will be assessed through a combination of remotely sensed -the-ground surveys. egetation can extend out to 15 years post-project completion.

unding availability, hyporheic exchange would be monitored.

635: Division 412 Fish Passage – 635-412-0035